Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chinese Journal of Biotechnology ; (12): 732-739, 2020.
Article in Chinese | WPRIM | ID: wpr-826903

ABSTRACT

We optimized a fluorescent quantitative polymerase chain reaction (qPCR) assay system for rapid and real time detection of SARS-CoV-2 RNA. The results show that the lowest dilution of RNA samples used for the detection of SARS-CoV-2 RNA could reach 1/10 000 (the initial value is set as 10 ng/μL). Moreover, the cycle threshold (Ct) for samples of clinically diagnosed COVID-19 was lower than 35 or 40. The sensitivity of this method was satisfactory. The results were consistent with those of the COVID-19 detection kit on the market under the same conditions, but the number of cycles required was shortened by about 2. Therefore, the optimized assay developed in this study can be used in screening and early clinical diagnosis. Our work provides a tool to facilitate rapid clinical diagnosis of COVID-19.


Subject(s)
Humans , Betacoronavirus , Genetics , Coronavirus Infections , Diagnosis , Virology , Early Diagnosis , Pandemics , Pneumonia, Viral , Diagnosis , Virology , Polymerase Chain Reaction , Methods , Reference Standards , RNA, Viral , Genetics , Sensitivity and Specificity , Time Factors
2.
Annals of Laboratory Medicine ; : 230-234, 2016.
Article in English | WPRIM | ID: wpr-56704

ABSTRACT

BACKGROUND: The largest outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection outside Middle East Asia in 2015 has necessitated the rapid expansion of laboratories that conduct MERS-CoV molecular testing in Korea, together with external quality assessment (EQA) to evaluate the assays used. METHODS: The EQA program consisted of two phases; self-validation and blind assessment. For the first EQA phase, in vitro transcribed upstream region of the envelope gene (upE) and the open reading frame (ORF)1a RNAs were used at a concentration of 1,000 copies/microL. The test panel for the second EQA phase consisted of RNA extracts from three samples, which were obtained from two MERS-CoV positive patients and one MERS-CoV negative patient. RESULTS: The first EQA phase results for 46 participants showed a linear relationship between the threshold cycle (CT) values of RNA materials and the logarithmic concentrations for both upE and ORF1a gene targets (R2=0.73 and 0.75, respectively). The mean CT value for each concentration was different depending on which commercial kit was used for the assay. Among the three commonly used kits, PowerChek MERS Real-Time PCR kit (KogeneBiotech, Korea) showed the lowest CT values at all concentrations of upE and most concentrations of ORF1a. The second EQA phase results for 47 participants were 100% correct for all tested samples. CONCLUSIONS: This EQA survey demonstrates that the MERS-CoV molecular testing performed in Korea during the 2015 outbreak is of robust capability. However, careful establishment and validation of a cut-off value are recommended to ensure good analytical sensitivity.


Subject(s)
Humans , Coronavirus Infections/diagnosis , Disease Outbreaks , Middle East Respiratory Syndrome Coronavirus/genetics , Molecular Diagnostic Techniques/standards , Quality Assurance, Health Care , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction , Republic of Korea/epidemiology , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL